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Let  us f i r s t  examine some urgent  ques t ions  of the theory  of heat conduction. The coeff icient  of heat 
conduction A is a t ensor  for  anisot ropie  media .  Hence,  i t  is  in te res t ing  to obtain a number  of solutions of 
heat  conduction p rob l em s  for  an iso t ropic  sol ids .  The coeff icient  of heat conduction of some fluids is  also 
a t enso r  at suff iciently high speeds .  In this case  the coeff icient  of heat  conduction depends on the s t ra in  
r a t e  t ensor  [1]. 

However ,  the d i f ferent ia l  equations of the heat conduction of m a t e r i a l s  with va r i ab le  m e m o r y  [2] a re  
of  g r ea t e s t  in t e res t .  

1 .  H e a t  C o n d u c t i o n  o f  M a t e r i a l s  w i t h  M e m o r y  

The speci f ic  heat  flux is defined in [3] by t h e r e l a t i o n s h i p  

q (~) = - -  ( k  (0) g (~ - -  0) dO, (1.1) 
0 

where  g =  grad T is  the t e m p e r a t u r e  gradient .  T h e r e f o r e ,  the specif ic  heat flux is  independent of the magni -  
tude of the t e m p e r a t u r e  gradient  at a given t ime.  Moreover ,  (1.1) is valid for i so t ropic  m a t e r i a l s .  

t f  the t e m p e r a t u r e  gradient  g is  independent of the t ime  O, then let t ing • denote the quantity 

=- ~k(0) dO, (1.2) 
0 

we obtain the c l a s s i c a l  fo rmula  for the F o u r i e r  heat  conduction law q = - - X g r a d T ,  where  X is the coeff i -  
cient of heat  conduction in the equi l ibr ium state .  

I f  it is  a s sumed  that (o) 
k(0) = - -  ~ exp - -  , (1.3) 

% 

where  Vr is the Maxwel l - -Cat taneo re laxa t ion  t ime  [4, 5], then we obtain an express ion  for  the heat flux 
taking account of the finite r a t e  of heat propagat ion in the fo rm 

q = - -  ~ grad T - -  % q. (1.4) 

The re laxa t ion  t ime  Tr is inverse ly  propor t iona l  to the square  of the finite r a t e  of heat propagat ion Wq and 
is  d i rec t ly  p ropor t iona l  to the coeff icient  of t e m p e r a t u r e  heat conduction a(T r = a / w ~ ) .  

I f  the l inear ized  governing equation for  the heat flux q and the in terna l  energy  e is  used in the fo rm 
[3] 

q = - -  ~ k (0) g (z - -  O) dO = .I k' (0) g* (0) dO, 
0 0 

(1.5) 

e = e o + C T - -  fl~" (0) T~(0) d0, (1.6) 
0 
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where 
d -~ g~ 

g (o) = (o) = g (~-0) ,  (1.7) 

c is the volume specific heat of the solid, ~ (0) is the internal  energy re laxat ion function, then we obtain the 
following relat ionships  for the t ime der ivat ives  of the heat flux (I and in ternal  energy e. 

= - -  k (0) g - -  .I k' (0)g (~-- 0) dO, (1.8) 
0 

e = c ?  + ~ (0) r + ~f ~' (o) r (T-- 0) dO. (1.9) 
0 

Then if the energy conservat ion equation is used, we obtain the following general ized l inear  equation of 
heat conduction: 

C 02T(x' ~) , aT(x, T) ~ ,  OT(x, ~--0)  
a~ ~ ~-  ~ (0) Or  ~ ,J (0) a~ dO 

0 

= k(0) U~ (x, T) -~ ~'k' (0)T2T(x, ~--0)d0 H- (~(x, z), (1.10) 

0 

where Q(x, 1") is the external  heat source .  Equation (1.10) di f fers  f rom the hyperbolic different ial  equa- 
tion of heat conduction in the presence  of additional integral  t e rm s  taking account of the re laxat ion functions 
of the heat conduction and the internal  energy.  The re la t ions  (1.8)-(1.9) show that the relaxat ion t imes  of 
the the rmal  s t r e s s  and the internal  energy are  different .  

A l inearized governing equation for the heat flux in the form 

q (T) -~ - -  ;~ (0)V T (~) - -  .t ~' (0) ? T (~ - -  0) dO, ( i . l l )  

0 

which takes account of the dependence of the heat flux on the t empera tu re  gradient at a given t ime, is used 
in [6] for an isotropic  medium. If it is assumed that h'(0) = 0, then we obtain the c lass ica l  F o u r i e r  equa- 
tion of heat conduction. F o r  X(0) = 0 we obtain a re la t ionship analogous to (1.1). The quantity X(0) is called 
the instantaneous coefficient  of heat conduction. In this case ,  the heat conduction different ia l  equation will 
be 

C(O) aT(x, "r) , l 'a,(O ) OT(x, ~--0)  dO== ~(O)~V(x, T) 
OT a'~ t.) 

' 0  

-- ~ ~,' (0) T2T(x,  "~--O)dO-~ Q(x, z). (1.12) 
t )  
O 

The l inear ized governing equation for the internal  energy 
co 

-- ' C(O)T +.Icz'(O)T(.~--O)dO , (!.13) e -- e 0 -T 
q 

was used in der iving (1.12), where a(0) is the re laxat ion internal  energy function, and C(0) is the instan-  
taneous volume specific heat. 

The different ia l  equation (1.12) has been solved for a half -space when the kernels  of the integral  r e l a -  
tions n O )  and M0) are  power-law or  exponential functions of the t ime 8. The presence  of integral  re la t ions  
in the heat conduction equation (1.12) does not introduee major  difficulties in i ts solution by the method of 
the Laplace integral transform since the integration in these relations is with respect to the time between 
the limits 0 and ~o [7]. Temperature waves in materials with memory are of special interest since they have 
the singularity that their propagation rates and damping coefficients differ from the analogous relationships 
in the classical theory of heat conduction. 
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2. H e a t  C o n d u c t i o n  a n d  D i f f u s i o n  w i t h  D i s c o n t i n u o u s  

T r a n s p o r t  C o e f f i c i e n t s  

The s imples t  heat conduction problems with moving boundar ies  are  the problems about the f reezing 
of mois t  ground or  the hardening of a fixed fluid (the Stefan problem).  In these prob lems ,  the phase t r an s -  
format ion sur face ,  the c rys ta l l iza t ion  sur face ,  say, moves within the body. Many papers  [8-9] are  devoted 
to the solution of this kind of problem.  These  problems can be reduced to problems with fixed boundaries  
but  with the introduction of discontinuous functions for the analyt ical  desci:iption of the t ranspor t  coefficients  
and the effect ive specific heat.  F o r  example,  the one-dimensional  Stefan problem 

C~(Ti) c?T~oz = OxO [)~ (T) ---~x ] 'OT~ ~. i=2,i=1' ~<x<lO< z <  ~ ('0; (2.1) 

with the boundary conditions 

T 1 (x, 0) = q~l (x) -4 TI; T2 (x, 0) = % (x) > TI; 

TI(0, ~) =h(~)  < r~; T~(l, ~) =/~(~) > r~; 
T 1 (~, ~) = T~ (~, ~) = T I = const; 

OT I ~ ( r )  or~ _ ~, ( r )  = r o~ 
Ox Ox O~ 

is reduced in [10] to the  heat conduction problem with fixed boundaries  

Ce(T ) c?r 0 [~,(T) Or ], 
or ax -~x ] 

where 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Ce(T ) = C (T) + r8 (V -- Tf); (2.7) 

C (T)=  { CI(T)' T < T f ;  ~,(T) = {  ~I(T)' T<Ts;  (2.8) 
C~(T), T >  T/; ~(T), T > T/, 

and 6(T--Tf) is the delta function. 

The r e f o r e ,  the heat conduction coefficient  MT) and the effective specific heat Ce(T) vary l in  jumps 
upon achievement  of  a t empera tu re  equal to the phase t ransformat ion  t empera tu re  (T = Tf). Integrat ing 
(2.6) with r e spec t  to x between (}--e) and (t + e), where ~ is an infini tesimal ,  we obtain the re la t ion 

~+e T(~--e,'0 

limB.., C (T) OTo,~ dx -b r,3 (T -- Tr -~  dT r d~_~, (2.9) 

~-s r(~--~.~) 

which pe rmi t s  complete  solution of the problem.  

Using discontinuous functions (Dirac delta functions, the Heaviside unit step H-function) permi t s  a 
new mathemat ica l  formulat ion of the problem of heating porous bodies for a cavity of the phase t r an s fo rma-  
tion sur face .  In this case  the ord inary  di f ferent ia l  equations of heat  and mass  t r anspor t  for  the drying of 
mois t  cap i l l a ry -porous  bodies can be used 

OT er Ou 
0r = a V~T -l- - -  - -  (2.10) 

c 0r 

Ou O'~Ou = arn~V2 u -~- am~8~ VST ~ e - ~  , (2.11) 

where  E, the coeff icient  of phase t rans format ion  (0 < e < 1), is descr ibed  by the following discontinuous 
function 

e = H (u) - -  H (u --  u]); (2.12) 

H(u) is the Heavistde unit function. 

H (u) = { o,l' uU ~ 0; (2.13) 

uf is the mois ture  content cor responding  to the evaporat ion surface  (see Fig. la) .  If the coefficient  e is a 
continuous function of the mois ture  content,  then in some cases  it can be represen ted  as (see Fig. lb) 

8 = H(u) --(1 - -  eo)H(u--u]), (2.14) 
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Fig. 1. Dependence of the phase transformation cr i ter ion e; a) on 
the mass content u; b) experimental curve of E(u) for quartz sand 
and its approximation by a discontinuous function. Moisture con- 
tea t  u, kg /kg  (u/~- uf). 

where  e 0 is the value of the coefficient  e(u) for a moi s tu re  content u -> uf. 

The analyt ical  solution of the d i f ferent ia l  equations (2.10)-(2.11) for a discontinuous value of the coeff i -  
cient e(u) given by (2.12), is  fraught with diff icult ies.  However ,  the p rob lem is solved comple te ly  by num-  
e r i c a l  methods.  

The p rob lem can be s impl i f ied  for the dry ing  of some cap i l l a ry -po rous  bodies  by taking the phase 
t r ans fo rma t ion  coefficient  dependent on the coordinates  and t ime.  F o r  example ,  for  the one-d imens iona l  
p rob lem we can take 

e (x, T) = H (x) - -  H (x - -  b~), (2.15) 

where  b is  the ra te  of deepening of the evaporat ion surface  02 = d t / dz ) ,  which is a constant  for a number  of 
m a t e r i a l s  [11]. The heat grad ien tcoef f ic ien t  6 depends on the moi s tu re  content;  this  dependence 6(u) is a 
sinusotd.  In a f i r s t  approximat ion it can be r ep re sen t ed  as the fo l iowingrela t ionship  (see Fig.  2): 

6(u)/6 m = 1 {u [g(u)--H(u--um)]+(2u,~--u) [H(u--um)--H(u--2um)]}. (2.16) 
/'/m 

The max imum value of the heat gradient  coefficient  5 m,  cor responding  to the max imum heat content u m 
(swelling moi s tu re  content), en te r s  as constants  in (2.16). 

The re fo re ,  an urgent quest ion in the theor ies  of heat conduction and heat and m a s s  t r a n s p o r t  is  the 
solution of the t r anspo r t  d i f ferent ia l  equations when the t r anspo r t  p rope r t i e s  and the the rmodynamic  c h a r a c -  
t e r i s t i c s  of the m a t e r i a l s  va ry  by a jump,  t . e . ,  a re  descr ibed  by discontinuous functions. Such a d e s c r i p -  
tion m o r e  t ruly  r e f l ec t s  the physical  t r a n s p o r t  mechan i sm and does not requi re  finding empi r i ca l  fo rmulas  
for the t r anspo r t  coeff icients  and the thermodynamic  p rope r t i e s  as a function of the t e m p e r a t u r e  and the 
m a s s  content.  

3.  H e a t  a n d  M a s s  T r a n s p o r t  i n  C a p i l l a r y - P o r o u s  B o d i e s  

A grea t  deal  of attention has recent ly  been paid to quest ions of heat and m a s s  t r a n s p o r t  in cap i l l a ry -  
porous  bodies  in connection with their  use as wicks  in heat  pipes .  I f  the gradients  of the concentra t ion 
Vu(Vu = Vr the t e m p e r a t u r e  VT(VT-= V~ 2) and the total  p r e s s u r e  (vapor and iner t  gas p r e s su re )  VP(VP 
-Vr  are  taken as thermodynamic  motive fo rces  for the t r anspo r t  of the heat c a r r i e r  (fLuid and vapor) ,  
t hen  the t r a n s p o r t  d i f ferent ia l  equations a re  

3 

-- E K u v  2~J' (3.1) 
0 t  

]= i  

for  a number  of s impl i f icat ions  (constancy of the t r a n s p o r t  coef f ic ien ts  and of the the rmodynamic  c h a r a c -  
t e r i s t i c s ) ,  and without taking account of the convect ive heat t r anspor t ,  w h e r e  the kinetie coeff ic ients  Kij 
(i, j = 1, ~., 3) a re  de te rmined  in t e r m s  of the heat and m a s s  t r a n s p o r t  coeff ic ients  and the thermodynamic  
c h a r a c t e r i s t i c s  [12]. 
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Fig.  2. Dependence of the heat g r a -  
dient coeff icient  5 on the moi s tu re  
content u for a col loidal  c a p i l l a r y -  
porous  body (clay at t = 35~ and 
approximat ion  of the curve  5(u) by 
a discontinuous function. 

F o r  a num ber  of  c a p i l l a r y - p o r o u s  bodies  the specif ic  m a s s  content u 1 of the vapor  and u 3 of the inert  
gas is negligibly sma l l  as compared  with the specif ic  m a s s  content of the fluid u2, i . e . ,  the fluid m a s s  con-  

tent  equals  the total  m a s s  content u(u 2 ~ ~ u i = u). 
i 

In this c a se ,  the s y s t e m  of th ree  t r a n s p o r t  d i f ferent ia l  equations (3.1) can be reduced to a s y s t e m  of 
two t r a n s p o r t  d i f ferent ia l  equations by e l iminat ing  the quantity V2% by means  of the re la t ion  for the vapor  
s o u r c e  I12. 

lr2 = --I.,.1 = a,,19 o ( - -  '-u - -  61~72T) = kp--2P. (3.2) 

I t  follows f rom (3.2) that a total  p r e s s u r e  gradient  or ig ina tes  because  of intense evapora t ion  and the p resence  
of r e s i s t a n c e  of the vapor  and gas to the f i l t ra t ion s t r e a m  through the c a p i l l a r y - p o r o u s  body. The re fo re ,  
the s y s t e m  of heat and m a s s  t r a n s p o r t  d i f ferent ia l  equations taking account of convect ive heat t r a n s p o r t  
b e c o m e s  

Or =/(11 ', "T - -  Kr,_~'2u - -  ~ � 9  (cvi,'cP o) j~" :7T, (3.3) 
i 

Ou 
_ _ ~  - - o  l Or K.,.z W '-T K2~ ,t , (3.4) 

where  the coeff ic ients  Kij( i , j  = 1, 2) a re  de te rmined  in t e r m s  of the t r anspo r t  coeff icients  (see [12]). 

If  the assumpt ion  is  made that the vapor  p r e s s u r e  within the body is a s ingle-valued function of the 
t e m p e r a t u r e  Pl = f(T) then for  an insignif icant  pa r t i a l  p r e s s u r e  gradient  of the iner t  gas within the cap i l -  
l a r i e s  of the body (Vp3 << ~YPI) and independence of 0P /0T  f rom the coord ina tes ,  (3.3)-(3.4) s implify and 
reduce  to the equations 

OT 
a e : T T ~ ( , .  )-, 

0u 
= am27 2u -r  an~SeS-O'T, 

Or 

where  ae,  5 e a re  the equivalent  coeff ic ients  to a and 6, equal to 

a e = a - -  rkp [ OP \ kp 

%0 
Y is the coeff icient  of convect ive t r a n s p o r t  

(3.5) 

(3.6) 

OP '/" (3.7) 
0T ,] ' 

, ~ C p l k  p ( O P )  (3.8) 
c,o  

We hence neglect  the convect ive heat t r a n s p o r t  by the fluid. If convect ive heat t r a n s p o r t  is neglected (7 
= 0), then (3.5) goes over  into the c l a s s i c a l  F o u r i e r  equation of heat conduction. The solutions of the s y s -  
t em (3.5)-(3.6) a re  well  known. 

F o r  a s ta t ionary  p r o c e s s  taking account of the change in the t r a n s p o r t  coefficient  and in convect ive 
heat  t r anspor t ,  we will have 
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div (~VT) + rdiv(kpvP) + clkpVP. V T  

q- c~am~ (Vu + 62VT ). V T  ~- 0, (3.9) 

div [a~ (Vu ~ 62VT)] + div (kpVP) = 0. (3.10) 

Hence,  taking account of vapor  t r anspo r t  is  c a r r i ed  out on the ba s i s  of the f i l t ra t ion law (Jl = - -kp 
V P ) .  If the radius  of the fluid meniscus  in the cap i l l a r i e s  is g r e a t e r  than 10 -5 cm,  then it is poss ible  to 
take the re la t ion  

v P  ~ v 7 ,  (3.n) 

i . e . ,  we neglect  the influence of curva tu re  of the meniscus  surface  on the vapor  p r e s s u r e .  

The p resence  of the p r e s s u r e  gradient  produces  a condition for  the eject ion of fine fluid par t i c les  
f rom the porous  body into the surrounding medium.  These  fluid pa r t i c les  a re  incident on the vapor  l ayer  
located nea r  the body sur face ,  where  their  evaporat ion indeed occurs .  The t r a n s p o r t  coeff icients  (X, 
am2, am2 5) in the t r anspo r t  equations presented  above should be de te rmined  exper imenta l ly ;  they depend 
on the s t ruc tu re  of the porous  body. I t  is hence a s sumed  that the t e m p e r a t u r e  of the cap i l l a ry  walls  equals 
the t empe ra tu r e  of the fluid o r v a p o r  in the capi l la ry .  Such an assumpt ion  is justif ied for  smal l  t r a n s p o r t  
in tensi t ies .  If  the t r anspo r t  intensity is g rea t ,  then such an assumpt ion  will be incor rec t ,  Moreover ,  the 
veloci ty of heat c a r r i e r  motion will va ry  a c r o s s  the cap i l l a ry  section.  In this case  the mean t e m p e r a t u r e  
and veloci ty of heat c a r r i e r  motion a re  introduced. It is expedient to use a different  descr ip t ion  of the heat 
and m a s s  t r a n s p o r t  ( separa te ly  for the fluid and vapor)  with the inser t ion  of the s t ruc tu r a l - -mechan i ca l  
c h a r a c t e r i s t i c s  for  such a model .  The s imples t  such cha rac t e r i s t i c  is the poros i ty  II. 

Let us denote the mean value of any quantity ~ (with r e s p e c t  to the f luid-fi l led volume of the pore  Vs) 
by ~, i . e . ,  

~ :  ! .  ~?dV. (3.12) 
V , ]  

V8 

Then the mean t e m p e r a t u r e  T and the mean l inear  veloci ty  of fluid motion v will equal r e spec t ive ly  

~ _  1 7 'o=  1 j, 1 ~  ~ -  7"2; v, - (3.13) 
- -  " p , _ H  

In the case  of fluid motion wi th in  a porous  body (fluid evaporat ion occu r s  only on the body surface) ,  
we will have 

[c.,p,.H 4- cop o (1 - - / i ) ]  0T ' T r  -{- c29,. div (Hv 2 T) 

= Ladiv [-j (HT)] q- )~o div [ ,,7 (1 - - H )  T--t -- div q*, (3.14) 

where  the heat flux vec to r  q* is  de te rmined  by the re la t ionship  [13] 
1 e 

q* = c.,.9.,_ [v,, T,_ - -  v~T2] q- (~.,2 - -  )~o) ~ ./~ ZFn~dA" (3.15) 

A i 

In tegra t ion occurs  along the fluid sur face  A i in contact  with the capi l la ry  walls  of the bodies ,  n 1 is 
the unit no rma l  to the sur face  A bounding the volume V. 

It follows f rom (3.14) that in con t ras t  to the Four i e r - -K i r chhof f  equation, heat t r anspo r t  occu r s  not 
only by means  of heat  conduction 

q = - -  [~2 H - -  )~0 (1 - -  H)] grad T-, (3.16) 

but in addition also because  of the contact  exchange between the body skeleton and the fluid (the in tegra l  
t e r m  in (3.15) and by means  of " turbulent"  heat exchange (the express ion  in square  b r acke t s  in (3.15)). 

Indeed, the heat  flux 

c~Pa [v2 T~ - -  v2T ~] (3.17) 

is the analog of the turbulent heat flux qtur in a moving fluid 

qt,,~ = c~p~ (T v - -  Tv) -- c.2p.aT'v'. (3.18) 

The re fo re ,  additional heat t r anspor t  due to the complex mechan i sm of fluid motion ex is t s  in a cap i l l a ry -  
porous body. 
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Let  us examine this quest ion in g r e a t e r  detai l .  In the major i ty  of c a s e s  turbulent  heat  t r a n s p o r t  is 
cons idered  propor t iona l  to the t e m p e r a t u r e  gradient  

qt,~r = cv9 (Tv - -  T--~) = :'~tu,,-~T -, (3.19) 

where  Xtur is  the coeff icient  of turbulent  heat conduction (Xtur = Cppatur) for a fluid s t r e a m  (Cp = c2; P2 = P; 
h z = ~). However ,  the turbulent  t r a n s f e r  can be desc r ibed  different ly .  Let us see the Fou r i e r - -K i r ch h o f f  
heat  t r a n s p o r t  equation for  a turbulent  i ncompres s ib l e  fluid flow (o = coast) ;  we will  have* 

cp9 + div vT = div ()~UT). (3.20) 

I f  the ave rage  with r e s pec t  to t ime  is  taken 
x+A~: "r+A'~ 

T-(r) = A'rI T (r) dr, v (r) = ATI v (r) dr, (3.21) 

then T,  ~ will be the mean va lues  of the t e m p e r a t u r e  T,  and the veloci ty  v in the t ime  in te rva l  &r .  We 
the re fo re  obtain 

0T , o Cp9 ~ "r- Cp, dlv ( T )  = div (LU'T). (3.22) 

Late r  we usually proceed  thus: 

v-T = v T  - - v  T + v-T = v '7" - -  (vT - -  v~). (3.23) 

We consequently obtain the F ou r i e r - -K i r chho f f  equation with the additional t e r m  div(TcT--vT) which 
is cal led the d ivergence  of the turbulent  heat flux d ivq tu r ,  i . e . ,  

(" 0T + v  . v - ~ ) = d i v ( ~ , - T ) + d i v 0 : , , r V T ~ .  (3.24) cv9 . ~ - - r  

However ,  another  path is  also poss ib le .  The quantity ~T is a vec to r ,  and it can be compared  with 
the vec to r  ~ ' r  by using the second rank  t ensor  B: 

v-T = B.vT.  (3.25) 

Then we will have 

OT + (cvpTT).(v.B) cvP O: 

+c,,9"Ttr ( - v  B) + c,,o:F v.dZv B = div (),7-T) (3.26) 

in place of  (3.24). Since the fluid is  i ncom pres s ib l e ,  then divZr = 0. 

Equation (3.28) is essent ia l ly  different  f rom (3.24) since a t enso r ,  the coeff icient  of turbulent  t r a n s -  
por t  B en te r s  instead of the coeff icient  of turbulent  heat conduction. 

F r o m  our viewpoint,  the passage  f rom the vec to r  vT to the vectorS]?  by means  of (3.25) is more  c o r -  
r e c t  than using the r e l a t ions  (3.19) and (3.23). 

Analogous convers ions  can be made for  (3.17)_by using (3.25). However ,  in this case  the t ensor  
t r a n s f o r m  B which se ts  up the connection between vT and ~T is unique but not ce r ta in ly  l inear .  The t r a n s -  
format ion  ma t r ix  is de te rmined  f rom an equation which can be solved by using the boundary conditions on 
the sur face  A i. T h e r e f o r e ,  no addit ional hypotheses  with the introduction of the coeff icient  of turbulent  
heat  conduction is r equ i red  in the case  of c a p i l l a r y - p o r o u s  bodies .  

The in tegra l  re la t ion  in (3.15) d e t e r m i n e s  the additional heat  flux on the in te r face  between thefluid 
and the cap i l l a ry  wal ls .  

An analogous si tuation holds for the f i l te r ing  motion of a fluid within a porous body. 

An additional force  with which the fluid s t r e a m  acts  on the porous  s t ruc tu re  bes ides  the hydro-  
s ta t ic  p r e s s u r e  and other  ex te rna l  fo rces  o r ig ina tes  as a fluid moves  within a porous  body. The magnitude 
of this force  fG computed pe r  unit volume equals [13] 

*To shor ten the der iva t ion  we neglect  the Rayle igh diss ipat ion function. 
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fo = [P - -  pl].n:dA = ~ ,  (3.27) 

A i 

where R is the drag  coefficient which is a function of the fluid ve loc i ty  averaged locally with r e spec t  to the 
volume Vs. It is hence assumed that the porous body is a disor iented porous s t ruc ture .  Then the d i f feren-  
t ial  equation of f i l t rat ion fluid t r anspor t  will be 

V p - -  ~ d[v(Vv) + Rv--  0, (3.28) 

which differs  f rom the cus tomary  Darcy fi l trat ion equation by the presence  of the additional t e r m  R~. The 
Poiseui l le  formula for laminar  fluid motion in capi l la r ies  is obtained as a par t icu la r  case (R = 0). 

4 .  A b o u t  M o m e n t u m  T r a n s p o r t  

The fundamental four mechanics  and thermodynamics  fields in the theory of nonlinear the rmomechan-  
ics of mate r ia l s  with memory  are  descr ibed by the governing functionals ~(j)(j = 1, 2, 3, 4). The govern-  
ing functionals for  a simple mate r ia l  are  [2] 

U 

Sq ={~(i~( G~, T~, g('~)) ] =  I, 2, 3, 4, (4.1) 

H 

where 

G * (0) = G (~ - -  0); T ~ (0) = T ( ~ - -  0), 

G is the s t ra in  gradient ,  u is the internal  energy,  s is the entropy,  and II is the s t r e s s  tensor .  

The governing functionals should sat isfy a number  of nonlinear  thermomechanics  pr inciples ,  includ- 
ing the principle of the e ras ing  memory  (postulate of regular i ty)  and the Clasius--Duhem inequality. 

Coleman [14] defines memory  as the recol lec t ion  of the mean value of the quantity multiplied by a 
coefficient  of forgetfulness.  The coefficient  of forgetfulness  diminishes the contribution of the preceding 
events even more ,  the g rea te r  the t ime interval  since the beginning of the event. In conformity  with the 
principles  of fading memory ,  the s t r e s s  will d i f fer  slightly f rom the equil ibrium s t r e s s  if  the deformation 
had been slight in the recen t  past.  

The fading memory  cha rac t e r i ze s  the mate r ia l  in the sense that the configurations which the body 
possessed  in the recent  past  exe r t  s t ronger  influence on these values of the s t r e s s  and f ree  energy than 
do configurations of the r emote  past.  

If the governing functional is continuous and different iable ,  then it can be approximated by a s impler  
functional. 

As has been shown above (w 1), the s implest  kind of memory  is taking account of the Maxwell finite 
ra te  of propagation of the appropriate  s t r e s s .  

According to (1.9), the heat conduction k(0) re laxes  according to an exponential law, which resu l t s  
in a cor rec t ion  to the Fou r i e r  heat conduction law in the form of taking account of the finite heat propaga- 
tion velocity (see (1.4)). 

Analogously, the Newton momentum t ranspor t  law (impulse) is based on the assumption that the velo-  
city of momentum propagation wa is an infinite quantity (wa = ~). 

Taking account of the finite momentum propagation velocity 

�9 l /  
where G is the elast ic  shear  modulus, and r r a  is the period of shear  s t r e s s  re laxat ion,  r e su l t s  in a gen- 
era l ized formula for the internal  fr ict ion s t r e s s  

a~j = ~le~j - -  "%ai~, (4.3) 

where ~ij is the s t ra in  ra te  tensor  (~ij = deij/dT). 
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The dot above the symbol  denotes  the t ime  der iva t ive .  F r o m  (4.3) we obtain the c l a s s i ca l  formula  of 
Newton 's  law for  in terna l  f r ic t ion if  we set  Tra  = 0 (w~ = ~), and the c l a s s i c a l  Hooke formula  for  the shear  
s t r a in  of an ideal  e las t ic  body if we a s s u m e  that the coeff icient  of v i scos i ty  tends to infinity (~ ~ % wa 
~oo). 

= Oe = pw~e. (4.4) 

I t  is comple te ly  na tu ra l  that the turbulent  f r ic t ion s t r e s s  t ensor  also r e l a x e s  dur ing a finite t ime in-  
t e r v a l  T tur .  Hence,  in the genera l  case  the Reynolds turbulent  s t r e s s  t enso r  will be descr ibed  by the gen- 
e ra l i zed  formula  

cr t"r = pv'v'  + T~r~r ~"r. (4.5) 

Taking account of these  genera l iza t ions ,  the Nav ie r - -S tokes  momentum t r a n s p o r t  d i f ferent ia l  equa-  
tion will  have a di f ferent  fo rm.  To e s t ima te  the contr ibution introduced by these genera l iza t ions ,  the 
magnitude of the fr ic t ion s t r e s s  re laxa t ion  t ime r r a  or  the r a t e  of  momentum propagat ion (w G) and the t u r -  
bulent s t r e s s  re laxa t ion  t ime rtrUr mus t  be known. These  quant i t ies  can only be de te rmined  exper imenta l ly .  

However ,  it can be a s sumed  f rom an ana lys i s  of the physica l  mechan i sm of mo lecu la r  and turbulent  
momen tum exchange that the turbulent  s t r e s s  re laxa t ion  t ime  is  cons iderably  g r e a t e r  than the molecu la r  
f rac t ion  s t r e s s  re laxa t ion  t . t u r  >> Try). ~-ro 

It  should be  noted that turbulent  momen tum t r a n s p o r t  cannotbe  d e s c r i b e d b y o r d i n a r y  t r ad i t i ona l -means  
when the turbulent  s t r e s s  t ensor  

~l~ = pv'v----' = p v v - -  pv v (4.6) 

is  cons idered  a function of the veloci ty  gradient  (for an incompress ib l e  fluid), and on the ba s i s  of another  
convers ion  of the diad ~ into the diad prr analogous to the re la t ion  (3.25). In this case  we obtain a m o m e n -  
tum t r a n s p o r t  equation in another  fo rm,  different  f rom the Navie r - -S tokes  equation. It mus t  be noted that 
the turbulent  s t r e s s  t ensor  is o rd inar i ly  cons idered  s y m m e t r i e .  

In his or ig ina l  paper  [15], Reynolds different ia ted 0 ~  r and atlar i . e . ,  cons idered  the turbulent  s t r e s s  
t enso r  n o n s y m m e t r i c .  The extension to the case  of  an a s y m m e t r i c  t ensor  cr tur  is given in [16-17]. 

The ana lys i s  p resen ted  above shows convincingly the f ru i t fu lness  and urgency of us ing the methods of 
nonl inear  t h e r m o m e c h a n i c s  of continuous media  in the theory of momen tum,  energy ,  and m a s s  t r anspo r t  
phenomena.  

The development  of a nonl inear  theory  of heat and m a s s  exchange is the p r i m a r y  p rob lem in this 
modern  domain of scient i f ic  knowledge. 

NOTATION 

g is the t e m p e r a t u r e  gradient ;  
T is  the t e m p e r a t u r e ;  
k(0) is the heat flux re laxa t ion  function; 
Wq is  the veloci ty  of heat propagation;  
a is the coeff icient  of  t e m p e r a t u r e  conduction (a = h/ep);  
e is the in terna l  energy;  
e 0 is  the constant  in terna l  energy;  
C is the volume specif ic  heat (C = cp); 
c is the specif ic  heat;  
k(0) is  the instantaneous heat  conduction; 
c(0) is  the instantaneous specif ic  heat; 
x is the posit ion vec to r  in Car te s i an  space;  
x is the coordinate;  
5 is the Di rac  delta function or  heat gradient  coeff icient  ~(u); 
H(u) is  the Heavis ide  unit function; 
u is the m a s s  content (mois ture  content); 
r is the specif ic  heat of phase t r ans fo rma t ion ;  
am is the coeff icient  of mo i s tu re  diffusion; 
P is  the total  p r e s s u r e ;  
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Pl is the vapor partial pressure; 
P2 is the inert gas partial pressure; 
Cp is the isobaric specific heat; 
kp is the coefficient of convective diffusion; 
V is the volume; 
v is the velocity of fluid or gas motion; 
II is the porosity; 
r ,  0 are the time; 

is the coefficient of heat conduction; 
t3 (0) is the internal energy relaxation function in (1.9); 
a(O) is the internal energy relaxation function in (1.13); 
X(O) is the instantaneous coefficient of heat conduction; 
t (T) is the coordinate of the phase transformation surface; 
p is the density; 
e is the phase transformation criterion; 

is the heat and mass transport potential. 

S u b s c r i p t s  

1,2 
Hi=O, 1, 2, 3) 

i , j  = 1; 2 ,  3 
f 
m 
e 
r 

are the zones separating the body, respectively, in Stefan problems (formulas (2.1)-(2.9)); 
are the states of the substance in a capillary-porous body (0 is the body skeleton, 1 is 
the vapor, 2 is the fluid, and 3 is the inert gas in a porous body); 
are the subscripts of the kinetic transport coefficients (3.1); 
is the phase transformation surface; 
is the maximum value; 
is the equivalent value; 
is the relaxation value. 
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